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Abstract. In connection with the increasing complexity of large integrated circuits (LSI), the problem of improving
computer-aided design systems (CAD) is acute. In particular, fast solutions are currently required at the stage of topological
design of microcircuits, especially in domestic CAD systems. This article discusses the possibilities of using modern artificial
intelligence capabilities in the field of microcircuit design. It substantiates the need to use and brief descriptions of some
technologies and sections of artificial intelligence, such as deep reinforcement learning (DRL) in connection with the
formalization of the task in the form of a Markov decision process, neural networks in connection with the representation of
LSl in the form of a weighted graph with feature vectors. Additionally, an analysis of the most common architectures of neural
networks is given. In addition, a method for placing LSI elements at the stage of topological design based on DRL using graph
neural networks (GNN) is presented with a brief description of the stages: processing the initial LSI design and the
characteristics of the elements to be placed and the basic matrix crystal (BMC), training or using an agent, asserting the
placement and maintaining related information.
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Introduction

More and more areas of science and industry are striving to introduce the achievements
of the field of artificial intelligence into their processes. The field of electronics was no
exception, where many processes are associated with automation [1, 2]. In particular, at
present, a lot of research is being carried out on the introduction of artificial intelligence in the
process of designing microcircuits [3-7].

Since the technological processes for the production of microcircuits are decreasing,
and the number of elements is increasing, the development process becomes more
complicated and more expensive. Previously, this was compensated by the use of CAD on
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standard algorithms. However, in the current realities, standard algorithms, even when using
parallelization, turn out to be too long and inefficient.

In the field of domestic production of LSI, an improvement in CAD using modern
methods and tools is also required. One of the stages requiring changes is the stage of
topological design, in particular, the operation of placing LSI elements on the BMC [8].

Purpose of the research

The most efficient, but the slowest and most costly, in finding a solution to the problem
of placing LSI elements are greedy algorithms, which boil down to enumeration of all possible
options. The main part of the standard algorithms used is their modification or parallelized
version. With an increase in the number of elements in microcircuits, such algorithms become
extremely inefficient.

Thus, new modern methods and means are needed. Taking into account the
achievements in the field of artificial intelligence [9, 10] and the first studies on its application
in the field of electronics, it was decided to analyze the possibility of using them for the problem
of placing LSI elements.

Materials and Methods

For the correct selection of methods and means for solving the problem of placing LSI
elements, it is necessary to formalize it.

Used sets:
1. E ={e1, ez ..., en ..., en} — set of elements of the microcircuit for placement;
2. P ={p1, p2, ..., pm, ..., pm} — a fixed set of positions in which elements from the

set E must be placed.
The main condition in this case:

Minimum required metrics for evaluating the final placement of LS| elements:

1. estimation of the total distance between connected elements;

2. calculation of delays with a margin to assess the progress of the signal while
maintaining the requirements for the microcircuit;

3. assessment of the microcircuit filling density with elements in order to avoid

excessive concentration of elements at a specific point on BMC.

In the general case, the placement problem is reduced to a Markov decision-making
process [11]. It can be solved by using reinforcement learning to approximate the optimal
policy through learning reward maximization. To work with a complex structure - a LSI project,
neural networks will be required [12].
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Some of the most common neural network architectures are: Fully Connected Neural
Network (FCNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and
Graph Neural Network (GNN). They can work with all possible representations of information,
however, the problem is how well they are able to hold a representation of the relationship of
information elements to each other. The following are brief characteristics and most common
uses of these neural network architectures.

FCNN. Used for a variety of types of information from simple numbers to images and
sounds. However, to keep the structure, i.e. "Remember" about the connection of the
elements at the input to each other, can not in principle. In addition, this neural network is
capable of receiving only the initially specified size of information.

CNN. Mainly used for image processing. Cannot hold structure and is unable to accept
information of different sizes.

RNN. Most often used in the processing of textual information. Can hold simple links
between pieces of information for a short time. The size of the information may vary. However,
the longer the information supplied to the input, the worse the relationship between the first
and the last units of information is retained in the network memory.

GNN. Works with graphs that can represent different types of coded information. In
addition, this network holds the structure of the graph and can accept graphs of different sizes,
provided that the characteristics of the vertices and connections are the same.

Thus, a GNN was chosen.

Formalization of the problem using Markov decision processes is as follows [13-15]:

J8.GE = PY) = Er, [Bpc] = D 7(pI6) g
o

where 6 are the weights of the approximating function, i.e. neural network, mg is the agent's
policy, G is a graph representing the placement of elements of the set E in the cells of the set
P, Ry is the reward, q, ¢ is the value function.

The neural network will be used to evaluate placement. To do this, it is required to
present the LSI graph in a special way (fig. 1) - to select the necessary characteristics that are
important for evaluation.
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Fig.1. Representation of a part of the LSI in the form of a graph structure with vectors
of characteristics of nodes and weights of connections
Results
The placement of LSI elements according to the developed method is carried out in
stages (Fig. 2). Before the start of placement, preparatory work is carried out: the collection of
information about the LSI, the connections of the elements, the peripheral elements and their
placement, the design and area of the BMC.
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Fig.2. LS| Element Placement Method Using Reinforcement Deep Learning Agent
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At the first stage, the received information is converted into working data structures,
including information about the connections of elements is converted into a matrix form, the
necessary variables, the agent and the neural network are initialized, and the queue of placed
elements is formed.

The next step is directly step-by-step placement of LSI elements. At this moment, the
agent gets access to the queue of elements to be placed, the graph structure and the
representation of the BMC. The placement takes place in several steps, repeating in a circle
one after another until the queue of elements for placement is empty. The first step is to
prepare a package from several placements, one element at a time, and calculate the agent's
goal. The second step calculates the estimate of the neural network of the current placement,
obtained on the basis of a graph structure that changes over time from the placement of LSI
elements on the BMC, checking some metrics that can be checked throughout the process,
and calculating rewards.

At the placement approval stage, the placement is evaluated according to basic
metrics, then, if the placement is found to be satisfactory, it is submitted for tracing. The
average metrics from the database for similar chips will be used to evaluate the final
placement. After the trace, the usual general checks will be performed, including the
calculation of delays. If all tests are passed, then placement is considered successful. In case
of problems, return to the previous steps.

During the training, the methodology will additionally introduce the stage of
documentation, i.e. saving the learning history of the neural network weights, their changes
and agent parameters to the database, reports on placement, queues and changes in the LSI
graph structure, calculations of evaluation metrics and awards, both at the end and during the
entire placement.

Discussion

This method of placing elements is designed to reduce the time of the physical stage
of LS| design. Based on the results of scientific research related to the implementation of
artificial intelligence in related fields, as well as the analysis of various methods and tools, the
use of deep reinforcement learning will lead to significant improvements.

The main direction of future research will be related to the development of a test module
for implementation in the microcircuits development process of CAD "Kovcheg" for testing
and comparing results with existing methods for placing LS| elements.
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