SPEED-INDEPENDENT FLOATING POINT COPROCESSOR

Stepchenkov Yuri, Zakharov Victor, Rogdestvenski Yuri, <u>Diachenko Yuri</u>, Morozov Nickolai, Stepchenkov Dmitri

Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, IPI RAS, Moscow, Russian Federation

Contents

- Why Speed-Independent circuits?
- Structure chart of SI-Coprocessor
- Ternary ST-coding
- Simplified indication
- SI-coprocessor's pipeline
- SI-coprocessor's features
- Conclusions

Why Speed-Independent circuits?

- They reduce power consumption due to removing both clock generator, and "clock tree" out of a circuit
- They have wide workability range on power supply and temperature

IPI RAS

Divider & Square Rooter,

IPI RAS

EWDTS-2015

Projected part of SI-logic (ITRS)

Years EWDTS-2015

Structure chart of SI-FPC

IPI RAS EWDTS-2015

Booth multiplier

IPI RAS EWDTS-2015

Ternary ST-coding

Synchronous redundant			Self-Timed redundant			
code			(ternary) code			
State	Binary		State	ST ternary code		
	code					
	Α	В		Ар	Am	An
+1	1	0	+1	1	0	0
0	0	0	0	0	0	1
<u>-1</u>	0	1	–1	0	1	0
N/A	1	1	spacer	0	0	0

Ternary SI-adder

IPI RAS

EWDTS-2015

Ternary SI-adder

Dual-rail SI-adder

Dual-rail SI-adder

Dual-rail Wallace tree

1700 transistors, 7 stages

Ternary Wallace tree

2190 transistors, 4 stages

Simplified indication

Full indication only in spacer phase

***** Bitwise indicators

Pipeline organization: Top view

Pipeline organization: One stage

One bit of input register InpR

SI FPC's parameters

Parameter	Value		
Complexity, transistors	315 000		
Die size, mm ²	0.47		
Performance, Gflops	0.54		
Latency, ns	1.9		
Power consumption, mW/Gflops	450		

Testing SI-Coprocessor

Conclusions

- At first time in the world, really SI-FPC unit performing FMA operation was implemented
- Usage of ternary ST-code provided best performance of the Wallace tree
- Simplified indication allowed for reducing both the complexity and work phase time
- Two-stage pipeline sufficiently decreased hardware cost at minimal drop of performance

Contacts

- Director: academician Sokolov I.A.
- Address: Institute of Informatics Problems of the Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences (IPI RAS), Moscow, Russian Federation, 119333, Vavilova str., 44, b.2
- Tel: +7 (495) 137 34 94
- Fax: +7 (495) 930 45 05
- E-mail: <u>ISokolov@ipiran_ru</u>
- Stepchenkov Y.A., tel. +7 (495) 671 15 20, IPI RAS stepchenkov@ipiransrylo